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1. Introduction 

This document presents a review of Australian research in aeronautical fatigue and 
structural integrity in the period April 2017 to March 2019, and consists of inputs from the 
organisations listed below. The editors acknowledge these contributions with 
appreciation.  Each contribution includes relevant references for further information and 
enquiries should be addressed to the person identified against the item of interest.  

DST Defence Science and Technology Group, 506 Lorimer Street, Fishermans Bend, 
VIC 3207, Australia 

QinetiQ Australia Level 3, 210 Kings Way, South Melbourne, VIC 3205, Australia. 

RMIT University Dept of Aerospace, Mechanical and Manufacturing Engineering, 
PO Box 71 Bundoora, VIC 3083, Australia 

The University of Adelaide School of Mechanical Engineering, The University of 
Adelaide, Engineering South, L1, SA 5005, Australia 
 
Monash University – Dept. of Mechanical Engineering, 
PO Box 72, Monash University, VIC 3800, Australia 
 
Civil Aviation Safety Authority Aviation House, PO Box 2005 Canberra, ACT 2601, 
Australia 

Royal Australian Air Force Deputy Director ASI, Defence Aviation Safety Authority, 
Defence Plaza Melbourne, 661 Bourke Street, Melbourne, VIC 3000, Australia 

RUAG Australia Pty Ltd 836 Mountain Highway, Bayswater, VIC 3153 Australia 
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2. Research activities 

2.1 Early Fatigue Crack Detection using High-Order Harmonic 
Generation Phenomenon Associated with Propagation of Guided Waves 
(Ching Tai Ng, Yang Yi and Andrei Kotousov [The University of 
Adelaide]).  

Guided waves are mechanical stress waves that propagate along the structure while 
guided by its boundaries. These waves propagate at considerable speed, up to a few 
thousand m/s without significant attenuation. The amplitudes of guided waves are 
typically very small of order nano-meters, and the propagation of these waves has no 
influence on the normal operation or the stress state. Aerospace structures often comprise 
plate- and shell-like load-bearing components, which permit propagation of Rayleigh and 
Lamb waves. Therefore, the properties of these waves have been extensively investigated 
over the past two decades with regard to the potential applications in damage detection 
techniques and integration of these techniques into Structural Health Monitoring systems 
of aerospace components made of metallic and composite materials.    

The current guided wave damage detection techniques largely rely on the reference data 
obtained from the undamaged structure. But the damage-free reference data can be 
significantly affected by temperature variations, material degradation other environmental 
factors and operational conditions. All these conditions and factors significantly reduce the 
efficiency and reliability of the damage detection techniques based on guided wavers, 
leading to false alarms or masking the critical damage. Therefore, there is a great practical 
interest in the development of reference-free damage detection techniques for metallic and 
composite components, which are not affected by changing environmental factors and 
operational conditions [1].  

The reference-free damage techniques can be based on various nonlinear features and 
utilise different non-linear phenomena of Lamb and Rayleigh waves, such as the 
generation of the high-order harmonics. The present paper presents a brief overview of 
recent studies on fatigue crack detection using the high-order harmonic generation 
phenomena associated with the propagation of the fundamental symmetric mode (S0) of 
Lamb waves. The details of these studies can be found in the published papers provided in 
the reference section. Some selected results from these studies are briefly discussed below 
[2-4]. 

Figure 1a, for example, shows the spectra of the experimentally measured signal for the 
incident S0 of Lamb waves. The experimental results indicate that there is a relatively large 
(with respect to the detection by common PZT sensors) magnitude of the second-order 
harmonic induced by the interaction of the incident wave signal with a fatigue crack. 
Figure 1b shows a comparison of 3D finite element (FE) simulations with the experimental 
data. The comparison demonstrates a good agreement; and it confirms, in particular, that 
the experimental guided wave studies can be ultimately replicated with high-fidelity 
numerical simulations.   
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2.2 Review of Three-Dimentional Effects Assotiated with Fracture and 
Fatigue Phenomena (Andrei Kotousov and Aditya Khanna [The 
University of Adelaide]) 

Fracture and fatigue analysis of plate and shell structural components often relies on plane 
stress or plane strain simplifications. These common simplifications may occasionally lead 
to peculiar results due, in part, to the fact that it is an approximate analysis even when the 
plane stress or plane strain equations are solved exactly [1].  

 

Figure 1. Representation of the exact solution to plane problems of elasticity as a sum of an interior 
plane stress solution and 3D stress state near boundaries [1]. 

In linear-elastic problems, it is now commonly accepted that the actual three-dimensional 
(3D) stress and deformation fields can be resolved as a sum of an interior (2D) plane stress 
solution and 3D layer solution as illustrated in Figure 1 [1 -10].  The 3D layer solution 
decays exponentially with the distance from the nearest boundary, and it is normally 
negligible at the distances comparable with the plate thickness. However, fracture or a 
fatigue crack are typically initiated from a stress concentrator representing a sharp change 
in the geometry of the plate boundary, and, therefore, these processes may also be 
significantly affected by the 3D stress states and 3D effects. The latter was the main 
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Figure 3. Generation of the coupled fracture mode due to Poisson’s effect for a through-the-thickness 
crack loaded in Mode II [1, 10]. 

The ultimate objective of these long-term research activities is to develop a 3D Fracture 
Mechanics framework, which would help to address the drawbacks and inconsistencies 
associated with the prevalent 2D results in fracture analysis which are based on the plane 
stress or plane strain simplifications [1, 10, 12].  
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2.3 X-ray Computed Tomography of fatigue cracks in aluminium alloy 
(Bruce R. Crawford, Timothy J. Harrison, and Chris Wood [DST], Lucinda 
Le Bas [Monash University]) 

This experiment was a feasibility study to determine the sensitivity of X-ray Computed 
Tomography (CT) to detect fatigue cracks in aluminium alloy and thereby assess the 
feasibility of monitoring fatigue crack growth at the Imaging and Medical Beam Line 
(IMBL) facility at the Australian synchrotron. Ultimately, fatigue crack studies with an in-
situ loading apparatus may be performed in the beamline, where the intense flux of the 
synchrotron may make real time monitoring of fatigue crack growth possible. 

Six specimens of the aluminium alloy 7050-T7451 in an initial corroded state were subject 
to fatigue loading to failure and then were examined in the synchrotron. Three of these 
specimens (the low-kt specimens) were flat plates that did not concentrate stress while the 
other three (the high-kt specimens) had a central hole which concentrated stresses thereby 
localising fatigue crack growth to the region of highest stress. The figure below compares 
the co-location between corrosion damage and fatigue in both geometries. In the low-kt 
specimens numerous cracks have initiated on the surface of the material examined. In 
contrast, in the high-kt specimens fatigue cracks only initiated in narrow region around the 
specimen’s maximum stress region. The observed difference in localisation of micro-
cracking sites exceeded the predicted difference from finite element modelling. 
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combinations. Crack growth tests were conducted under constant amplitude fatigue load. 
Preliminary results showed that both the building orientation and process parameters 
have significant effects on fatigue crack growth rates. 

 

Figure 1. Crack growth rates for the vertically and horizontally built CT specimens of AM Ti-6Al-
4V containing numerous lack-of-fusion defects. 
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2.6 The application of piezoelectric strain gauges to enhance fatigue 
crack closure measurement (C. Wallbrink and D. Agius [DST]) 

The Defence Science and Technology (DST) Group is responsible to support the Australian 
Defence Force via research and advice relating to aspects of aircraft structural integrity. 
One important aim has been to safely manage and improve our understanding of the 
fatigue life of structures, components and materials that make up an airframe.    To 
quantify and predict fatigue behaviour numerous techniques have been developed (such 
as the crack closure concept) to predict the influence of load history on the fatigue life of 
aerospace components.  To date, limited experiments have been conducted to assess crack 
closure in variable amplitude load sequences, in particular aircraft sequences due to 
limitations in measurement techniques.  Crack closure produces a very small non-linear 
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strain response dependant on location (~1-2με) requiring a measurement device with high 
sensitivity and accuracy. Piezoelectric strain gauges offer new potential by providing 
superior signal to noise measurements.  These sensors provide the potential to monitor 
crack closure in variable amplitude load spectrums to an unprecedented level of fidelity.  
In this work a remote piezoelectric strain gauge was used to measure the non-linear strain 
response in a compact tension specimen.     

 

Figure 1. Reduced strain measurements at block 282 where the dashed line is a single cycle and the 
solid line is averaged over 100 cycles for a) resistive strain gauge and b) piezoelectric strain gauge 

The applied force vs reduced strain is plotted in Fig 1 for both piezoelectric and resistive 
strain gauges.  The reduced strain is the total strain with the linear portion subtracted to 
reveal any nonlinear response.  At a crack length of 4 mm in size, crack closure was 
observable on the largest load cycle in the sequence with an opening load of ~0.25 of the 
maximum load. It is clear in Fig 1 that the signal to noise ratio for the piezoelectric strain 
gauge is far superior to that of the resistive strain gauges. The piezoelectric strain gauge 
displayed a measurement error of approximately 0.5 με where the resistive strain gauge 
displayed a measurement error of approximately 45 με. The results indicate that crack 
closure is observable on a cycle-by-cycle basis in a variable amplitude load sequence.  
Notably individual cycles produced by the piezoelectric strain gauge are consistent with 
the averaged loops, unlike the resistive strain gauge results where crack closure is only 
observable after averaging across 100 cycles.  This work has found that piezoelectric strain 
gauges are a viable measurement tool for higher order strain based effects such as crack 
closure.   

References 

[1] C. Wallbrink and D. Agius, The application of piezoelectric strain gauges to 
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2.7 
based
comp
and P

Laser c
means
techno
Furthe
where 
Compu
steels 
Refere
crack 
materi
stress 
also th
interfa

 

Figure 
of laser

 

Computa
d laser cla
ponents (K
P. Bendeic

cladding is 
s to repair 
ology has n
er work is n
 the repair
utational m
including A

ence source
growth thr
ial.  The mo
associated 
he USAF s

aces with th

 2. Modelling
r cladding rep

ational m
adding str
K. Walker
ch ANSTO

 an Additiv
 high stren

now been a
now underw
r material 

modelling te
AerMet®10
e not found
rough the c
odelling [1] 

with the p
sponsored 
e StressChe

g results for
pair of AerM

odel deve
ructural re
r, DST, T. 
O Austral

ve Manufac
ngth metal

applied for 
way to exten

is verified
echniques h
00 which is
d. shows re
clad and H
also accoun
rocess.  Th
BAMF cod

eck® p-vers

r crack propa
Met®100 stee

elopment 
epairs of h
 Cooper, Q
lia) 

cturing tech
llic aerospa
 a range of
nd the app

d to carry 
have been d
 often used

ecent results
Heat Affecte
nted for the
he modellin
de which i
sion Finite E

agation throu
el 

 for Addi
high stren
QinetiQ A

hnology wh
ace compo
f cases invo
lication to c
loads and 

developed f
d for landin
s for crack 
ed Zone (H
 significant

ng was cond
is a plug-in
Element An

ugh compres

tive Manu
ngth meta
Australia,

hich is emer
onents and 
olving geom
cases of frac
 restore str
for high str
ng gear com
growth mo

HAZ) and i
 (and benef
ducted usin
n with AF

nalysis code

ssive residua

ufacturin
allic aeros
, O. Mura

rging as a s
 structures
metry resto
cture critica
ructural in
rength mar
mponents. 
odelling inv
into the su
ficial compr
ng FASTRA
FGROW an
. 

al stress field

17 

ng 
space 
ansky 

suitable 
.  The 

oration.  
al parts 
tegrity.  
tensitic 
 Error! 

volving 
ubstrate 
ressive) 

AN and 
nd also 

 

d in case 



 

 

The w
residu
constra
Transf
and AI
signific
Prelim
Error! 
in the 
heat ef

 

Figure 

 

Refere

[1] 
for ther
high-st

work has pro
al stress f
ained therm
formation (S
ISI4340.  Ea
cant error, 

minary resul
 Reference 
modelling 

ffects. 

 3. Residual s

ences 

Walker, K
rmal process 
trength AerM

ogressed to
field mode
mal expans
SSPT) effect
arly attempt
 including 
lts with 434
source not 
including m

 stress profile

K.F., Sun, S.,
 induced res

Met®100 stee

o also devel
elling is ex
sion and p
t which occu
ts to model 
 predicting
0 steel inclu
 found..  Fu
material ad

e comparison

, Brandt, M
idual stress 
el, in TMS 2

lop modelli
xtremely c
plasticity, a
ur for marte
 the process

g tension a
uding the S
urther work
dition and 

ns, with and 

M., Hodges, 
 in additive m
2018. 2018: P

ing of the r
complex.  
and also n
ensitic steel
s without in

at the surfa
SSPT effect a
k is ongoing
 overlappin

 without SSP

J., DeWald,
manufacturin
Phoenix AZ

residual str
It involve

non-linear S
ls such as A
ncluding th
ace instead
are encoura
g to include
ng tracks wi

 

PT 

, A., and H
ng based lase

Z USA. 

ress field [2
es accounti
Solid State 

AerMet®100
he SSPT resu
d of compr
aging, as sh
e important 
ith subsequ

Hill, M., Acco
er cladding r

18 

2].  The 
ing for 
 Phase 

0, 300M 
ulted in 
ression.  

hown in 
 details 

uent re-

ounting 
repair of 



 

19 
 

[2] Walker, K.F., Cooper, T.P, Muransky, O., and Bendeich, P., Computational model 
development for Additive Manufacturing (AM) based laser cladding structural repairs of high 
strength metallic aerospace components, in ADF Aircraft Structural Integrity Symposium. 2019: 
Melbourne, Australia. 
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2.8 Analytical modelling of fatigue crack behavior under representative 
spectrum loading in the F/A-18 A/B Y508 wing root shear tie (K. Walker, R. 
Evans, X. Yu, L. Molent, B. Main DST, M. Hill and J. Hodges Hill 
Engineering USA) 

The Defence Science and Technology Group (DST) has been investigating and enhancing 
metal fatigue predictive tools for many years. Recently a local blind-prediction challenge 
was conducted by DST for a series of coupons manufactured from Aluminium Alloy 7050-
T7451 plate simulating a combat aircraft wing root shear restraint (or shear tie post) 
subject to a combined aerodynamic buffet and manoeuvre load spectrum. Analysts were 
provided with details including the geometry, material and loading, and were asked to 
predict the total fatigue life. Results from a detailed three dimensional finite element 
model of a cracked or uncracked test coupon were also available to the analysts. The 
results from that exercise are detailed at [1].   

 
Following the blind prediction phase, further analysis was undertaken using a USAF 
sponsored code known as the “Broad Application for Modelling Failure”, BAMF.  BAMF 
is a plug-in for the crack growth analysis code AFGROW.  BAMF interfaces with the 
StressCheck p-version Finite Element Analysis code. The BAMF approach is as follows.  
The initial crack shape has to be assumed.  In this case a semi-circular surface flaw of 0.02 
mm deep was applied, as shown in Error! Reference source not found. which also shows 
a typical crack surface from the experiments.  StressCheck is used to calculate the stress 
intensity solution at 20 points around the crack front.  AFGROW is then used to grow the 
crack for a given size increment, typically 3%.  The new crack shape is then passed back to 
StressCheck for a SIF update and then crack growth is again calculated by AFGROW.  The 
process then continues and the crack shape is free to adapt according to the loading and 
material conditions.   
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rolling direction. Blind crack growth predictions compared to coupon quantitative fractography is 
shown (at bottom). 

The results from two separate, independent blind predictions are presented and assessed 
along with further non-blind analyses to evaluate the current capabilities.  The exercise 
found that accurate and reliable predictions are possible in a case like this, but the results 
are dependent on the availability of high-fidelity short crack rate data and a suitable stress 
intensity Beta solution. The work will provide confidence in existing fatigue life modelling 
capabilities leading to improvements in safety, availability and cost reduction.  

Reference 

[1] Main, B., Evans, R., Walker, K., Yu, X. and Molent, L. (2019) Lessons from a Fatigue 
Prediction Challenge for an Aircraft Wing Root Shear Tie Post, International Journal of Fatigue, 
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2.10 Graphene – Applications within the Aerospace Domain and its 
potential to provide Corrosion protection to Metallic Materials (Stephen 
Russo, Rafal Rutkowski, Andrew Foreman [QinetiQ]) 

Since its isolation in 2004, graphene has captured the attention of academia and industry 
alike. This two-dimensional material has demonstrated unparalleled mechanical, electrical 
and thermal properties and has the potential to revolutionise the aerospace sector. In 
particular, impermeability to gases and salts renders graphene an excellent candidate as a 
coating to provide corrosion resistance. 

The exploitation of graphene for aerospace applications is in its infancy and as the 
understanding of graphene matures its applicability will continue to expand. QinetiQ has 
been at the forefront in exploiting graphene through a number of collaborative programs. 
One such program has involved its use as a protective coating within the aerospace 
industry. 

Currently, in order to provide superior corrosion resistance characteristics, aerospace 
coating systems have relied on the use of chromates. Hexavalent chromium or chromate is 
currently the most effective way to inhibit corrosion of high strength aluminium alloys. 
However, these compounds typically have large environmental and process footprints and 
lead to the generation of large volumes of toxic liquid waste. They are widely accepted as 
hazardous to human health and their use throughout most industries has been reduced. 
Alternatives to the use of chromates have been explored for a number of years without 
much success. Conventional corrosion-inhibitor pigments (such as chromates) typically act 
by chemically inhibiting cathodic electron transfer to oxygen. However, various studies 
have claimed that the benefits of graphene and graphene-composites for corrosion 
protection arise principally from reduced permeation to oxygen and water. Graphene 
provides a new and novel approach for corrosion protection. 

A review of the literature demonstrated the benefits graphene has in affording corrosion 
protection to a number of metallic materials, including high strength aluminium alloys 
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used for aerospace applications. A variety of methods have been used to deposit graphene 
or graphene rich coatings on metallic surfaces. These methods have involved both ‘direct’ 
and ‘indirect’ applications of graphene. Direct methods in the form of Chemical Vapour 
Deposition (CVD) are not applicable to aluminium alloys, but have been successful in 
reducing corrosion of over an order of magnitude on other metals including nickel, copper 
and iron alloys. Corrosion testing of graphene coatings on aluminium alloys has focused 
on the use of Graphene Oxide (GO), sol gels and its incorporation in epoxy resins.  

Numerous studies on the electrochemical behaviour of these coatings have shown 
improved corrosion performance Most recently, Hybrid coatings based on CVD, 
comprising two single layers of CVD graphene sandwiched by three layers of polyvinyl 
butyral, (P) provide complete corrosion protection of a commercial aluminium alloy (AA) 
up to 120 days of exposure to simulated seawater (Figure 1). 

 

 

Figure 1.   Potentiodynamic scans for various exposure times in NaCl solution 

A collaborative corrosion program, exploratory in nature, with DST and industry was 
conducted on bare 2024-T3 aluminium alloy material deposited with a variety of graphene 
coatings. The coatings were provided by a number of suppliers including industry (using 
a proprietary graphene based dip coating process), QinetiQ (UK) and The University of 
Surrey. Those from QinetiQ were coated in a layer of reduced Graphene Oxide flakes 
encapsulated in a conducting polymer matrix whilst those from the University of Surrey 
coatings were coated using a CVD process graphene. A standard chromate conversion 
coating (IAW MIL-DTL-5541F Type 1 Class 1A) was also used for comparative purposes. 
Corrosion testing was undertaken in a cyclic salt spray chamber to simulate a corrosive 
environment IAW ASTM B-117. The testing profile used for the chamber was developed 
by DST and has been shown to best replicate typical environmental conditions 
experienced by ADF aircraft. The cycle had a 24 frequency where the salt concentration, 
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temperature and relative humidity were varied. The duration of the testing was up to 58 
days.  

The onset of pitting corrosion was evident on the bare 2024-T3 coupons after only 24 hours 
exposure with no evidence of corrosion attack on the other coupons. However, after 7 days 
exposure, corrosion initiation had commenced on the coupons coated with graphene. 
Comparison of the surface morphology both prior to and post corrosion testing is shown 
in Figure.2. It was found that prior to corrosion testing the graphene coating exhibited 
segregation of metallics at the grain boundaries and may have led to preferential corrosion 
attack at these sites. Wettability of graphene in these areas appeared to be incomplete. 
Further visual inspection of the coupons revealed there were distinct areas on the surface 
that had significant GO coverage and these areas were found to have minimal corrosion 
damage. It appears that a defect free graphene coating may provide corrosion protection 
in this environment. There was also anecdotal evidence that while the graphene coatings 
performed poorly with respect to their maximum pit depth, the mean pit depths showed 
improvements. 

 

 

(a) (b) 

Figure. 2. Micrograph of the graphene coating (a) prior and (b) post corrosion testing 

It was concluded that the ‘dip process’ may not be the most appropriate method for use on 
aluminium alloys to protect against corrosion. Observed limitations with this process have 
provided direction for examination of other coating processes that may provide better 
corrosion protection performance. This exploratory corrosion pilot study has also driven 
the development of a roadmap to better understand its corrosion protection properties of 
graphene. 

Email: sgrusso@qinetiq.com.au  
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2.11 Laser Deposition as a Viable Additive Manufacturing Repair 
Process, with Application to High Value Aircraft Steel Components (Tim 
Cooper [QinetiQ] and Dr. Kevin Walker [DST]) 

Typically, aircraft structural systems in high strength steel materials such as landing gear 
assemblies contain complex, high value parts that have very small allowable damage 
limits.  This can result in high value components being scrapped when the majority of the 
part is still serviceable.  Laser Deposition (LD) Additive Manufacturing Methods offer a 
promising solution to cost-effective repair of such damaged components with full 
restoration of strength with a definable life for the repair. 

Previous work  [References 1, 2, 3, 4] has shown that Laser Deposition of high strength 
Steels and Titanium alloys is a viable method for geometry restoration of damaged 
aerospace structural parts.  The LD process does induce residual stress within the 
deposited and adjacent existing material by the nature of the transient thermal processes 
involved.  Understanding the nature (compressive or tensile) and magnitude of the 
induced residual stresses is a key element of determining a remaining service life for a 
repaired component.  To enable this understanding, work has been conducted to develop 
and refine thermo-mechanical finite element modelling (FEM) techniques to model the LD 
additive manufacturing process, and correlate these models against new material test data 
obtained from instrumented test samples undergoing the LD process.  For steels that are 
subject to martensitic phase change, including the phase transformation effects in the 
Finite Element Model in addition to a valid representation of the thermal environment and 
material elastic/plastic properties is vital to ensure capture of an accurate residual stress 
state.   

Testing and associated FEM of 300M and 316 Steels undergoing the LD process has been 
conducted and comparison of the predicted and measured residual stress states for the 
two materials types is underway, noting that 300M undergoes Martensitic phase 
transformation, and 316 does not.  The Contour and Neutron Diffraction methods of 
residual stress measurement were used, and the development of the FEM’s in ABAQUS 
software to simulate the tests is underway, to be followed by comparison and correlation 
of the FEM results. The next stage of development is to choose a representative candidate 
component for repair and conduct a realistic simulation of the repair, to yield repaired 
component residual stress profiles that can be used in the prediction of a repaired 
component life. Following this, a batch of similarly repaired components would be tested 
under representative loading to determine actual life. 

This repair methodology offers significant future potential to platform operators by 
reducing costs and lead times where these factors are critical for steel structural items in 
air, land and sea platforms once the predictive capability of the modelling and life 
prediction has been matured and verified to support repair process certification. 
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The experimental techniques developed in this study can provide innovative solutions and 
improved science and technology support to the current and future Australian Defence 
Force aircraft structural integrity needs.  

Email: Michael.Forsey@dst.defence.gov.au  

 

2.14 An Empirical Model to Predict the Effect of Thermal Exposure on 
the Tensile Mechanical Properties of 7000 Aluminium Alloys (Suzanna 
Turk, Tim Harrison, Christine Trasteli and Alex Shekhter [DST]) 

Improvements in the performance of next generation military aircraft have resulted in a 
more demanding operating environment for the airframe when compared to legacy 
aircraft. When considering components manufactured from high strength age-hardenable 
aluminium alloys, higher operating temperatures or accidental exposure to high 
temperatures can degrade mechanical properties.  
 
DST designed an experimental program to assess this risk by measuring static properties 
for various exposure conditions between 93°C to 218°C for 1 hour, 10 hours and 100 hours. 
The experimental results were used to develop an empirical model to accurately predict 
retained baseline yield strength following thermal exposure for AA7050 and AA7085 
aluminium alloys. The empirical model, based on a sigmoidal function, was successfully 
validated using DST historic data and independent published data. It was able to predict 
the retained baseline yield strength for temperature ranges of 93°C to 350°C, over 
exposure times ranging from 10 minutes to 10,000 hours for AA7050, and exposure times 
ranging from 10 minutes to 100 hours for AA7085. The average percentage error for this 
model was 2.9%, with a maximum error of 12.9%.  
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[3]  Hu W, Wallbrink C. Fatigue life analysis of specimens subjected to infrequent severe 
loading using a nonlinear kinematic hardening cyclic plasticity model. Adv Mater Res 
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SLM and Wrought Ti-6Al-4V under Symmetric and Asymmetric Strain-controlled 
Cyclic Loading’, Rapid Prototyping Journal, Vol 24. Issue 9. pp.1409-1420 

[5] Agius, D., Kourousis, K. I., Wallbrink, C., 2018, ‘A Modification of the 
Multicomponent Armstrong-Frederick Model with Multiplier for the Enhanced 
Simulation of Aerospace Aluminium Elastoplasticity’, International Journal of 
Mechanical Sciences, vol. 114, pp. 118-133 

[6] Agius, D, Kourousis KI, Wallbrink C, Hu, W, Wang, C, Dafalias, YF, (2017) 
‘Aluminium Alloy 7075 Ratcheting Response and Plastic Shakedown Evaluation with 
the Multiplicative Armstrong-Frederick Model’, AIAA Journal. 

[7] 6. Agius, D., Kourousis, K. I., Wallbrink, C., and Song, T.: Cyclic plasticity and 
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Email: Chris.Wallbrink@DST.defence.gov.au  

 

 

  



 

35 
 

3. Full Scale Test Activities 

3.1 Progress on the Pathway to a Virtual Fatigue Test; Ben Dixon, 
Madeleine Burchill, Ben Main [DST]  

At ICAF 2017, Albert Wong (DST) proposed a pathway to a virtual fatigue test [1], to 
address the costly problem of being able to reliably and accurately predict structural 
fatigue at the airframe level. The aim of the TITANS (Trans-global Integrated Tests and 
Analyses Network for Structures) program was to strive towards a virtual fatigue test, by 
driving progressive improvements in aircraft fatigue modelling and experimentation 
through an international collaborative effort.  

Clearly, a virtual fatigue test is too complex, too large and too important for any single 
team or even country to solve alone and therefore a coordinated and collaborative effort 
on an international scale is required. The notion of a virtual fatigue test1 to replace (or 
enhance outcomes from) a real test is an emerging theme within the aerospace industry, 
but despite decades of research in  fatigue, abundant analytical models and exponentially 
increasing computational capabilities within this period, full scale fatigue tests continue to 
produce surprises and unplanned failures.  

Importantly, many of the elements that are necessary to progress towards a virtual fatigue 
test already exist, principally the very large and diverse fatigue test programs that are 
currently being undertaken (or recently completed). If, as proposed in the TITANS 
program, fatigue test data and associated outputs from teardown programs are made 
more generally available to the international community, more rapid scientific progress 
can be made;. The TITANS program proposed that this be done via the critical review of 
blind predictions of a series of real fatigue experiments.  

The goal of reducing the cost and length of the full scale tests (both static and fatigue) 
currently necessary to achieve type certification or life assessment was also held by others 
in the ICAF community, for example AIRBUS, and a community of interest was formed. 
Furthermore, DST recognised that the capability to undertake a virtual fatigue test would 
result in far-reaching beneficial consequences to the sustainment of fleets, including: 
enhancing individual aircraft tracking capabilities, increased confidence in fatigue life 
predictions  and the rapid validation of repair/modifications to airframes.  

To better capture this broader context, DST has renamed TITANS, to ASSIST (Advancing 
Structural Simulation to drive Innovative Sustainment Technologies). ASSIST remains true 
to the original TITANS blueprint for a collaborative program, which has been initiated 
with the following framework: 

• ASSIST community members perform blind fatigue life predictions for airframe 
prediction challenges, which are based on realistic aircraft loads and structures.   
• The merits of each prediction methodology will be discussed within the 
community based on the demonstrated predictive ability versus actual test results. 
• Publication of the collaborative forensic review of the results and the current 
shortcomings of each methodology. 

                                                      
1 highly complementary digital twin/digital thread principles [2, 3, 4] 
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Table 1. Summary of the three ASSIST airframe structure challenges initiated to date. 

Challenge name  
& details 

Estimated dates 
data posted 

on portal 
predictions due 

& results 
released 

draft report 
for review 

Challenge #2 – helicopter truncated spectra (Helo)  
Material - AA7050-T7451 
Spectrum – high frequency flight loads 
Test component - hourglass coupons 

30 Mar 2019 01 Aug 2019 01 Dec 2019 

Challenge #3 – military transport aircraft  (MTA) 
Material - AA7075-T7351 
Spectrum - military transport aircraft 
Test component – wide flat panels, pre-cracked holes

30 Mar 2019 01 Aug 2019 01 Dec 2019 
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3.2 C-130J Wing Fatigue Test – Deterministic Interpretation of Failure of 
the Butt Line 61 Wing to Fuselage Interface. (Kai Maxfield, Matthew 
McCoy*, Robert Ogden, Vuitung Mau* and Anthony Zammit* [DST/* 
QinetiQ]) 

On the 25th November 2015 the C-130J Hercules Wing Fatigue Test Program, conducted in 
collaboration between the Royal Australian Air Force (RAAF) and the Royal Air Force 
(RAF) reached a final successful conclusion, demonstrating structural durability and 
residual strength after application of two nominal lifetimes of test loading. Following this 
successful period of testing, a period of severe constant amplitude loading was applied to 
accelerate the growth of fatigue damage and identify life limiting structure. This aim was 
achieved a short time later following catastrophic structural failure of the port side wing. 

In addition to providing critical science and technology support throughout this structural 
test program (with the test contracted to Marshall Aerospace and Defence Group in 
Cambridge, United Kingdom) the Defence Science and Technology (DST) Group was also 
fundamentally responsible for developing the complex tools and processes necessary to 
translate fatigue test findings into RAAF instructions for continuing airworthiness. These 
deterministic tools and processes [1] have been transitioned for use by Australian 
industry; however DST retained responsibility for interpretation of the life limiting 
structural region.  This interpretation was completed by DST in early 2019 with the life 
limiting structure identified as the Butt Line (BL) 61 wing-to-fuselage interface (See Figure 
1). Catastrophic structural failure occurred at this location as a result of multi-site cracking 
in the wing lower surface panels, with adjacent damage also present in the rear lower spar 
cap and selected lower surface stringers. DST interpretation of damage within this critical 
region subsequently provided a robust basis for development of ongoing instructions for 
continuing airworthiness with the analysis demonstrating an achievable expansion of 
current critical location inspection limits. 

Further work is continuing at DST to apply probabilistic risk analysis methods aimed at 
establishing a Structural Life of Type for this platform under RAAF configuration, role and 
environmental conditions.  

 

 

 

 

 

 

 

Figure 1. Life Limiting BL 61 region of the C-130J Hercules 
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3.3 Forensic Analysis of Damage found during the Teardown of a 
Military Transport Aircraft Fatigue Test Article (Douglas Williams, Vui 
Tung Mau*, Anthony Zammit*, Robert Ogden, Kai Maxfield and Matt 
McCoy* [DST/ * QinetiQ]  

Teardown and forensic examination of the test structure from the Royal Air Force and 
Royal Australian Air Force (RAAF) full scale C-130J wing fatigue test has recently been 
completed by DST in collaboration with Airbus Group Australia Pacific and QinetiQ 
Australia. 

The teardown phase of the program, an activity recommended by [1], recorded in excess of 
fourteen hundred discrete damage findings. The most significant of these were selected for 
forensic analyses to provide valuable crack growth data for test interpretation activities. 
Figure 1 presents a span-wise distribution of some of the damage found during teardown 
in the centre wing structure. 

  

Figure 1. C-130J Wing Fatigue Test teardown centre wing span-wise damage distribution map 

Quantitative Fractography (QF), material testing and load application assessments of the 
significant damage items was conducted at DST. A sample of QF analysis for the centre 
wing rear lower wing panel (BL 61 region) is shown in Figure 2. 

 In general the detailed forensic examination conducted in support of this test program 
provided detailed information on; the benefits of load spectrum effects in QF analysis, 
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 Verification and Validation of the TI process. To ensure TI outcomes are 
compliant with the TCB, QinetiQ undertook V&V of the tools, data and TI process, 
covering all aspects from test loading through to DST developed analysis tools. 

 Part 21 Design. This includes all TI requirements along with the implementation 
aspects listed below.  For DST TI work, the outcomes are included within the 
QinetiQ design. 

 Holistic Implementation.  Rather than complete individual designs for each 
location, a holistic approach is undertaken covering all locations on the same 
structural element.  This ensures that all findings are covered and allows for the 
alignment of inspections with similar access requirements. 

 Configuration. Comparison is made to ensure intervals are not impacted by 
differences between the fleet configuration and the DTA configuration. 

 NDI. The suitability of the extant procedures was assessed to ensure they cover the 
required structure, if there is any obscured structure, and the access requirements.  
All these may necessitate revising the DTA using less conservative assumptions. 

 Implementation urgency. The WFT derived intervals are promulgated in 
Equivalent Flight Hours with usage tracked by the C-130J Individual Aircraft 
Tracking Program - APaCHE. However, there is the possibility that the new 
intervals may be overflown before the inspections can be undertaken. In these 
cases QinetiQ, provides a strategy that allows the next inspection to occur at a 
more suitable time, whilst remaining compliant with the TCB.  This may require re-
assessment of the assumptions underpinning the DTA.  

 Modifications. An interval that cannot be extended to a suitable frequency may 
dictate the need for a modification to provide inspection relief.  In a similar manner 
a location where in service cracking is deemed likely, a modification may be 
recommended to assist with aircraft availability.   

Thus far, TI and implementation has been able to provide maintenance/availability relief 
by alignment of inspections with the deeper maintenance cycle for the RAAF C-130J fleet.   
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Figure 1. Crack growth modelling verses test cracking and fleet observations 
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3.5 Evaluation of a PC-9/A Wing Main Spar with Misdrills using 
Enhanced Teardown at Resonance (Ben Main, Keith Muller*, Michael 
Konak, Michael Jones, Sudeep Sudhakar^ and Simon Barter 
[DST/*RMIT/^DASA]) 

Widespread production miss-drills in Royal Australian Air Force (RAAF) PC-9/A wing 
main spar lower caps were a potential threat to airworthiness and fleet availability late in 
the service life of the aircraft. A rapid, novel, enhanced teardown of a retired RAAF PC-
9/A wing spar with production miss-drills was successfully completed to assess this risk. 
Dynamic block loading was applied to the main spar lower cap of a wing with multiple 
miss-drill indications identified in-service using x-ray inspection. Using an enhanced 
teardown experimental method of cycling the wing at resonance, fatigue failure occurred 
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4. In-Service Structural Integrity Management 

4.1 Hypotrochoid-based design of optimal rework shapes for repair of 
fatigue damaged aircraft structures (Xiaobo Yu and Manfred Heller [DST]) 

Fatigue cracking is one of the main concerns that affect the structural integrity of metallic 
aircraft components. To effectively repair and extend the life of fatigue damaged aircraft 
components, the Defence Science and Technology (DST in Australia has developed an 
innovative repair technology known as rework shape optimisation Error! Reference 
source not found.. With this repair technology, the fatigue damaged region is three-
dimensionally modified into a new shape that is optimised for stress reduction. The repair 
only involves localised material removal, and can be applied precisely, either in-situ or at a 
repair depot.  

Prior to 2017, the optimal rework shapes developed by DST for service applications were 
mainly by a freeform-based approach, where a series of control points were used to define 
a 2D master curve, which  is then used to construct the rework profile via extrusion. With 
this approach, the rework shape was optimised by gradual repositioning of the control 
points using a DST in-house optimisation code interfaced with standard finite element 
analysis (FEA). As demonstrated previously, the freeform-based approach is capable to 
produce an optimal shape that leads to the most stress reduction. Nevertheless, it requires 
high-level FEA and programming skills to establish application-specific links between the 
in-house code and the standard FEA to automate the iterative process.  

Recently, a new approach, namely the hypotrochoid-based approach, has been developed 
in DST for the design of optimal rework shape Error! Reference source not found..  The 
mathematical formula that defines hypotrochoid shape is given in Ref Error! Reference 
source not found., and here re-presented as Eq (1).   

 

൜
ݔ ൌ ܴሾሺ1  ݉ሻ cos ߠ െ ݊ cos ሿߠ3
ݕ ൌ ܴሾሺ1 െ ݉ሻ sin ߠ 	݊ sin ሿߠ3

                                                                               (1) 

 

When compared to the freeform-based optimisation, the hypotrochoid-based approach has 
a range of benefits, including: no requirement for dedicated optimisation software or 
customised coding, readily executable by a typical finite element analyst, and nearly as 
good optimal designs achievable with very few numbers of FEA iterations. The 
effectiveness of the hypotrochoid-based approach is elaborated through two recent 
applications. One relates to the optimal design of rework shapes to recover an F/A-18 
inner wing with fatigue damage at the aft spar shear tie location Error! Reference source 
not found.. The geometry and peak stress of the optimal repair are illustrated in Figure 1 
(a), in comparison to the as-received profiles. With the sufficient stress reduction, the 
optimal design was implemented as shown in Figure 1(b) and the recovered wing was 
returned to service, managed on an unaltered fleet safety-by-inspection program interval.   
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Figure 2. Application of the hypotrochoid-based approach for the design of optimal rework shape of 
C-130J bow beam runout.  
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4.2 Recovery of a cracked F/A-18A/B inner wing using acetate replica 
inspection and shape optimisation. (Ben Main, Xiaobo Yu, David Russell, 
Brett Lemke*, Grant Hiller*, David Tata* and Simon Barter [DST / 
*QinetiQ]) 

Repeated fatigue cracking was observed in the Royal Australian Air Force fleet during 
Safety-by-Inspection (SBI) program inspections of the inner wing aft spar upper flange 
shear tie radius of a Hornet wing. Previous hand blends and conventional non-destructive 
testing had either missed the crack tip, or fatigue cracking had reoccurred in-service. To 
repair the wing again by blending away further material, confirmation of full crack 
removal was required along with a blend profile which would not exacerbate the peak 
stress in the radius location. A repair scheme was developed with these objectives by 
Defence Science and Technology (DST) and QinetiQ Pty Ltd using acetate replica 
inspection and numerical shape optimisation modelling techniques.  
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4.4 DST approach to harvesting free energy inside a Rotorcraft Gearbox 
- Powering next generation of long-duration HUMS experiments with 
Wireless Acceleration Transducer (Riyazal Hussein, Scott D. Moss, 
George Jung and Henry J. Kissick [DST]) 

Health and Usage Monitoring Systems (HUMS), and/or Condition-Based Maintenance are 
useful if they can detect abnormalities via algorithms. Recently reported Class-A 
helicopter [1, 2] mishaps have been attributed to faulty planetary bearings/gears in the 
main transmission gearbox. Potentially, these faults - which lead to catastrophic failure - 
could have been detected by HUMS however, it failed to detect as currently, these 
algorithms to detect this types of faults doesn’t exist. 

A commercial-of-the-shelf (COTS) Ridgetop’s RotorSense TM wireless sensor [3] was 
acquired to conduct next generation of long–duration HUMS experiments on this type of 
fault where crack is propagated along the valley/tooth of planet gear of Kiowa Bell 206B 
Gearbox. The sensor is attached to the planet carrier just above propagated crack gear; 
wirelessly transmitting data to a gateway outside the gearbox and finally accessed on a 
computer via network by data analysis research scientist. The experiments require a 
158 mW of continuous power (3.5 volts @ ≈ 45 mA) [4] over many months, which is 
beyond the capacity of the manufacturer supplied primary cell. Hence, DST has developed 
an approach for harvesting energy inside the Bell 206 gearbox. This approach uses a wire 
pancake-coil electromagnetic transducer also attached to the planet carrier inside a 
gearbox that is rotating at 5.8 Hz, and a series of stationary permanent magnets attached to 
the inside of the casing and adjacent to the circular transducer arrangement. When 
operating at ~350 revolutions-per-minute (rpm), the prototype harvester device examined 
in this work produces an average electrical power of 280 mW. The modelling and 
experimental approach of this harvester is detailed in reference [5].   

 

Figure 1.  Exploded view in Solid Works for the components of energy harvester to be 3D printed 

As shown in Figure 1, Ridgetop’s Rotor Sense TM   sensor system is a COTS wireless 
rotational and acceleration sensor (3-axis) designed to extract high-resolution vibration 

Rotor Sense
Sensor 

Planet Carrier gear 
Energy Harvester 

- coil & circuit 
holder 

Energy 
Harvester - 

Magnet holder 

Bell 206 top 
Cover 

Teflon sheet 



 

 

signatu
magne
design
magne
out of 
magne

The ro
magne
magne
Farada

 

 

where 
wire co
the coi
impuls
power
voltage
maxim
wireles

 

Figure 

The co
accom
harves
pulses
capacit
efficien
regula
power

ures caused
et holder, an
n (Solidwork
et holder is 
 its eight stu
ets along its

otating coil 
ets, and und
ets during 
ay’s Law of 

 Ve.m.f. is the
oil, l is effe
il and Δ is
se of 30 V 
r-conditioni
e source of

mum power
ss sensor. 

 2. Energy ha

oil and circ
panied by 

sted electric
 are first re
tor. A buck
ncy. This i
tion to a su

r-conditioni

30V 
Discrete 
voltage 

impulses

d by gear f
nd (ii) a coil
ks) and we
 attached to
uds, and co
s circumfere

 is position
derneath is 
rotation, th
 Induction [

e electro-m
ective length
s change in 

amplitude 
ng circuit c
f 3.49 Volts
r of the ener

arvester func

cuit holder 
a DST des

cal power. 
ectified (dio
k regulator
is followed
ufficiently c
ng circuit 

 

s 

faults. The 
l and circuit
re three-dim

o the inner c
ontains up t
ence. 

ned such tha
 a protectiv
he perman
[6].  

ܸ...

otive force 
h of the coi
 time. At 35
 which is 
converts the
s with a “c
rgy harvest

ctional block

 (Figure 1)
signed and
Detailing t
ode bridge
r converts t

d by a low
clean, const
also featur

High 
Impedanc

energy har
t holder, bo
mensionally
casing of th
o eight equ

at there is 
ve Teflon co
ent magne

ൌ െN݈
ߔ߂
߂

(voltage), -
il, ΔΦB is th
50 rpm, eig
not suitabl
e high volt
critical” me
ter is P=ܸଶ/

k diagram 

) hosts an 
d built pow
o operation
) which the
the high vo

w dropout l
tant output
res overvol

ce 1 MH

rvester itsel
oth were de
y (3D) print
he Bell 206 g
ually spaced

a gap of 2 
over. As the
ts induces 




 

-N is the nu
he change o
ght magnets
le for pow
tage pulses 
easured loa
/R = 283 m

electromag
wer-conditio
n of the po
en charge a
oltage to a
linear regu
t of approxi
tage protec

4 V 
Hz

lf consists o
signed usin
ted using p
gearbox top

d Samarium

 mm to the 
e transduce
 an electro

umber of tu
of flux dens
s produced 
ering electr
 into a stea

ad resistanc
mW that is u

gnetic coil t
oning circu
ower-condit
a small hig

approximate
ulator for f
imately 3.5
ction at bo

of two part
ng compute
polycarbona
p cover usin

m-Cobalt rar

 lower face
er sweeps p
-motive for

rns contain
sity going th
 a discrete v
ronics dire

ady, regulat
ce of 43 Ω. 
used to pow

transducer 
uit to regul
tioner, the v
gh voltage s
ely 4 V wit
filtering an
 V (Figure 

oth the inp

28

Low 
Impedance 

51 

ts: (i) a 
r aided 

ate. The 
ng four 
re earth 

e of the 
past the 
rce via 

(1) 

ned in a 
hrough 
voltage 
ctly. A 
ted DC 
Hence, 

wer the 

 

that is 
ate the 
voltage 
storage 
th high 

nd final 
2). The 

put and 

3.5 V 

83 mW 



 

52 
 

output stage to protect itself and the attached sensor.  Any excess power produced during 
operation is safely dissipated. The harvesting system generates ≈ 50% more power than is 
needed to meet Ridgetop’s sensor operating requirement. 
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4.5 Developments in Risk-Based Fatigue Failure Prediction for 
Application to Military Aircraft (Ribe Torregosa and Weiping Hu [DST]) 

Fatigue life prediction is a major issue in the field of engineering especially in aerospace 
structures which requires accurate prediction due to underlying costs involved. Although 
prediction of crack behavior over the years has improved and modelling has become more 
sophisticated, the accuracy of deterministic prediction cannot be accepted without 
question. Some airframe cracking scenarios are highly complex, requiring sophisticated 
methods to appropriately manage potential risks including variability of influencing 
parameters.  This parameter variability and its influence on fatigue is addressed in the 
MIL-STD 1530D [1], which mandates the application of probabilistic risk analysis (PRA) in 
structural integrity assessment. Conducting a probabilistic risk analysis (PRA) of fatigue 
failure requires the following data: i) the equivalent initial damage size (EIDS) 
distribution, ii) the master crack growth curve, iii) the maximum stress distribution per 
flight and iv) the residual strength corresponding to a given crack size. Of the four 
parameters, the EIDS distribution and the master crack growth curve have been found to 
be influential. It should be noted that the EIDS is dependent on the master crack growth 
curve since EIDS is derived by analytically determining the initial damage size 
distribution that characterizes the damage size distribution observed during test or in 
service using the master crack growth curve [1]. Risk-based fatigue failure research at the 
Defence Science and Technology (DST) has focused on three areas: i) methods to improve 
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Summary 

With the increasing demand for risk-based approaches to structural integrity assessment 
of military aircraft, DST has been actively supporting the RAAF by conducting research to 
improve the methods associated with fatigue failure prediction of structures. 
Investigations examining the application of different distribution models for the EIDS 
distribution resulted in a new proposed model using bounded distributions such as beta 
distribution. The use of a bounded distribution addresses one of the critical issues in risk 
analysis, in which commonly used distribution model are unbounded to the right which 
allows the possibility of an EIDS greater than the size of the component itself. Even the 
smallest possibility of unrealistically large initial crack size has the potential to increase the 
calculated single flight probability of failure risk by several orders of magnitude. Thus, the 
need for unbounded crack size probability distribution model which does not allow 
infinitely large initial crack size.    

 

 

Figure.  3 FracRisk graphical user interface 

 

DST investigated the validity of a DST developed risk assessment methodology in 
conjunction with the MIL-STD1530D guidelines. Preliminary investigations based on DST 
coupon tests showed that the probabilistic approach predicted failure results in the 
expected range. In the future, analysis of multi-site fatigue damage (MSD) considering 
multiple and interacting cracks will be added to capabilities of FracRisk.  
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The ATSB found that the manufacturer’s maintenance documentation did not include specific 
inspection procedures to detect fatigue cracking of the propeller shaft. In addition, the operator’s 
inspection worksheets did not provide for the recording of inspection findings as defined within 
documented procedures. Consequently, this may not have provided for the best opportunity to 
ensure potential defects were identified, recorded and monitored. 
 

What's been done as a result 
Following the occurrence, the engine manufacturer (General Electric) released a number of 
service bulletins (SB 72‐0530 and SB 72‐0531) requiring immediate inspection of the PGB 
propeller shaft. Changes were also made to the engine maintenance manuals to include more 
ongoing detailed inspections of this area. Additionally, the United States Federal Aviation 
Administration, issued airworthiness directive AD 2018‐03‐13, on 14 February 2018, which 
required initial and repetitive visual inspection and fluorescent‐penetrant inspection (FPI) of the 
main propeller shaft for affected engines. 
 

Safety message 
This occurrence highlighted how non‐life‐limited components such as a propeller shaft may still 
develop defects and fail in‐flight. Appropriate training, the use of checklists and effective crew 
interaction, provide the best opportunity for a positive outcome in the event of such a failure 
affecting flight safety. Additionally, operators are reminded of the importance of having work 
sheets that accurately reflect the requirements and intentions of associated maintenance 
documentation. 
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5.2 RAAF Aileron Shroud Cracking; (N. Athiniotis [DST]) 

During servicing of a RAAF fighter/trainer type aircraft both aileron shrouds (LH and 
RH) were discovered cracked in approximately the same location. The DST investigation 
revealed that cracks in both the left and right hand aileron shrouds formed via the 
initiation and propagation of fatigue cracking. The cracks initiated from discontinuities 
below the Ion Vapour Deposited (IVD) aluminium surface layer. The discontinuities at the 
crack origins were consistent with etch pits that can form during the acid pickling stage of 
IVD coating.  

 

Figure 1: Location of cracking 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fatigue cracking direction and visible progression marks 
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Figure 3. Crack origin below IVD and other etch pits below the IVD layer that could potentially act 
as crack initiation sites 

As the cracks initiated from pre-existing surface defects, it is likely that cracking began 
when the components first entered service or very shortly thereafter. The fatigue cracks 
progressed via loads arising during normal operation, and it is likely that other aileron 
shrouds in the fleet will also suffer fatigue cracking in this location. It is likely that this is 
issue will have resulted from manufacturing shortfalls. 

Email: Nick.Athiniotis@dst.defence.gov.au  

 

5.3 Trailing Edge Flap Transfer Tube Assembly Failures 

First-in-RAAF service failure of two Trailing Edge Flap (TEF) Servo Cylinder Transfer 
Tube Assemblies was discovered during inspections on a fighter/trainer type aircraft. 
Cracking was due to fatigue under combined bending and compressive loads that arose 
during normal operation. The cracks were located at the forward radius of the central 
tubular section and crack initiation was from the external surface of the Tube. Results from 
the fatigue crack growth analysis as well as examination of the fracture surface indicated it 
was likely that fatigue cracks began propagating early in the life of the Tube.  Component 
age and usage are suspected factors.  



 

61 
 

 

Figure 1. Location of cracking 

 

 

 

 

 

 

 

Figure 2. Crack location and fracture surface. Numerous crack origins, with multiple small fatigue 
cracks having merged to form single crack fronts 

 

 

 

5.4 Fuel Tank Vent Stringer Crack 

In a transport aircraft, un-commanded fuel transfer from the #1 main tank into the centre 
tank was observed during an extended period the aircraft was on the ground. 
Investigation of the left hand wing fuel vent stringer revealed a cracked tab at wing rib 
number 6. The subject stringer is fabricated from AA7055 aluminium alloy heat treated to 
a T77511 temper. The through-crack located adjacent to the attachment tab on the left hand 
wing fuel vent stringer was caused by stress-corrosion. The gap in between the attachment 
tab on the vent stringer and the wing rib resulted due to insufficient shimming during the 
manufacturing of the aircraft, exacerbating the stress experienced at the attachment tab 
location, and contributing to the initiation and propagation of the stress corrosion crack.  
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Figure 1. Bolt shaft can be seen through the gap between the shim and rib 

Figure 2. Location of cracking along tab 

 

 

 

 

 

 

Figure 3. The intergranular nature of the fracture surface 

 


