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Probabilistic Risk Assessment

➢ Probabilistic Risk Assessment is an important tool for 
ensuring structural integrity of aircraft components.

➢ Based on the principles of probabilistic damage tolerance 
analysis.

➢ The Single Flight Probability-of-Failure is difficult to 
compute accurately and efficiently due to several 
challenges:

➢ Very small probabilities, e.g., 1E-7 or smaller

➢ Standard Monte Carlo sampling is impractical

➢ Inspection and repair process results in multi-modal 
crack size distributions

➢ FORM/SORM methods are impractical

➢ Inspection optimization requires multiple analyses

➢ Efficient reanalyses are required
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Probabilistic Risk Assessment 
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Inspection 1

Inspection 2

Acceptable to fly
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Probability of Failure Calculation

Probability that Max value of the applied 
stress will exceed the residual strength

Max applied stress Probability 
Density Function 

Residual Strength Realization

EVDf

Flight Hours

𝑃𝑂𝐹 𝑡 = 𝑃 𝜎𝑀𝐴𝑋 > 𝜎𝑅𝑆 𝑡



Probability Equations
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The probability-of-failure is the probability that maximum value of the applied stress 
(during the next flight) will exceed the residual strength σRS of the aircraft 
component. 

𝐹𝐸𝑉𝐷– CDF of the maximum stress per flight (extreme value distribution)
𝜎𝑅𝑆 – residual strength

𝑃𝑂𝐹𝐹𝑟𝑒𝑢𝑑𝑒𝑛𝑡ℎ𝑎𝑙 𝑡𝑛 =
׬ ς𝑖=1

𝑛−1𝐹𝐸𝑉𝐷 𝜎𝑅𝑆 𝒙, 𝑡𝑖 1 − 𝐹𝐸𝑉𝐷(𝜎𝑅𝑆(𝒙, 𝑡𝑛) 𝑓𝑋 𝒙 𝑑𝑥

ς𝑖=1׬
𝑛 𝐹𝐸𝑉𝐷 𝜎𝑅𝑆 𝒙, 𝑡𝑖 𝑓𝑋 𝒙 𝑑𝑥

𝑃𝑂𝐹𝐿𝑖𝑛𝑐𝑜𝑙𝑛(𝑡) = 𝑃 𝜎𝑀𝑎𝑥 > 𝜎𝑅𝑆 𝑡 = න[1 − 𝐹𝐸𝑉𝐷 𝜎𝑅𝑆 𝒙, 𝑡𝑛 ) 𝑓𝑋 𝒙 𝑑𝑥
𝜎𝑀𝑎𝑥 > 𝜎𝑅𝑆

Other random variables

Survival to time t



SMART |DT
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෠𝐸 𝐻 𝒙, 𝑡 =
1

𝑁
෍

𝑖

𝐻 𝒙𝑖 , 𝑡 𝑤 𝒙𝑖

Importance Sampling

➢ Define

𝒙 – random variables:
➢ initial defect size

➢ fracture toughness

➢ dadN variability

➢ geometric parameters

➢ etc.
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Monte Carlo Sampling Importance Sampling

𝑓 𝒙

𝑞 𝒙

region of 
importance

E 𝐻 𝒙, 𝑡 = 𝐻׬ 𝒙, 𝑡 𝑓 𝒙 d𝒙

෠𝐸 𝐻 𝒙, 𝑡 =
1

𝑁
෍

𝑖

𝐻 𝒙𝑖 , 𝑡

E 𝐻 𝒙, 𝑡 = න𝐻 𝒙, 𝑡
𝑓 𝒙

𝑞 𝒙
𝑞 𝒙 d𝒙

Importance weight 
𝑤 𝒙𝑖 = 𝑓 𝒙𝑖 ∕ 𝑞 𝒙𝑖

𝐻 𝒙; 𝑡 = 1 − 𝐹EVD 𝜎RS 𝒙; 𝑡

Standard normal space

Draw samples from 𝑞



Phase I: Initialization

➢ Goal is to locate important regions in standard normal space.

➢ Generate samples near and around the important regions for all evaluation times.

➢ Performs exploration to find the location of important regions.

➢ The adaptation phase will focus on determining the scale and shape of important 
regions.
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Phase II: Adaptation

➢ Determine evaluation times at which to focus samples. Note, near-by times also obtain 
improved results.

➢ Use Coefficient of Variation (COV) which is a normalized error estimate.

➢ Ensures COV across all evaluation times is below a user-defined threshold. 9

Add sampling density 
to reduce COV here

Add sampling density 
to reduce COV here

Add sampling density 
to reduce COV here
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Adaptive Multiple Importance 
Sampling Approach

Individual evaluation time 
important regions

Combined important 
region

𝐸 𝐻 𝑥, 𝑡 =
1

𝑁𝑚𝑖𝑥 𝑁𝑠𝑎𝑚𝑝
෍

𝑗=1

𝑁𝑚𝑖𝑥

෍
𝑖=1

𝑁𝑠𝑎𝑚𝑝

𝐻 𝒙𝑖𝑗 , 𝑡
𝑓 𝒙𝑖𝑗

Τ1 𝑁𝑚𝑖𝑥 σ
𝑘=1
𝑁𝑚𝑖𝑥 𝑞 𝒙𝑖𝑗 , 𝜽𝑘 10

➢ Approximate the averaged or combined important region using a mixture density composed of multivariate normal 
sampling densities optimized for individual evaluation times.

➢ Key advantage is that samples can be used for more than one important region where regions overlap.

N.Crosby, ”Efficient Adaptive Importance Sampling Estimation of Time Dependent Probability of Failure with Inspections for Damage Tolerant Aircraft Structures,” PhD 
dissertation, University of Texas at San Antonio, 2021



Example Problems

➢ Risk assessment handbook example using a closed-form crack 
growth equation.

➢ General aviation example with inspections.
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Risk Assessment Handbook 
Problem

Parameter Value

Width Deterministic 10 in

Radius Deterministic 0.125 in

Initial Crack Size 𝐿𝑁 0.0032, 0.0047 in

Fracture Toughness 𝑁 34.8, 3.90 ksi in

Maximum Stress per Flight 𝑊 5.0,10.0, 5.0 ksi
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𝑎 𝑡 = 𝑎0 ⋅ exp 2.93 × 10−4 𝑡

𝜎rs 𝑎 = 𝐾𝑐 ∕ 𝛽 𝑎 𝜋 𝑎

𝛽 𝑎 = 0.6762 +
0.8734

0.3254 + 𝑎 ∕ 𝑅
⋅ sec

𝜋 𝑅 + 𝑎

𝑊

𝛽width𝛽hole

Tuegel et al., Aircraft structural reliability and risk analysis handbook volume 1: Basic analysis methods., Technical report, Air Force Research Lab, Wright-Patterson AFB, OH, Aerospace Systems Dir, 2013



POF Results

➢ 15 evaluation times

➢ COV threshold 0.1

➢ Lincoln Formulation
➢ (assumes survival = 1 from flight 0 to 

flight 𝑡)

➢ 80 samples per iteration

➢ 11 iterations

➢ 880 samples

➢ Freudenthal Formulation
➢ (does not assume survival = 1 from 

flight 0 to flight 𝑡)

➢ 160 samples per iteration

➢ 19 iterations

➢ 3040 samples 15

Liao M., Comparison of different single flight probability of failure (SFPOF) calculations for aircraft structural risk analysis. In Aircraft Airworthiness and Sustainment (AA&S) Conference, 2012

Flight hours

Independent verification



PDTA AMIS Accuracy of Error Estimates

➢ Variations calculated for 100 PDTA AMIS runs.

➢ For both Lincoln and Freudenthal POF Formulations. 

➢ PDTA AMIS estimates are within the expected error bands, showing the sampling variance 
gives a good indication of estimator error.

➢ PDTA AMIS median error is close to 0, showing the estimates are consistent. 
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Lincoln POF Formulation Freudenthal POF Formulation

Flight hours Flight hours



POF Inspections

➢ Inspections are not deterministic – there is some probability of missing cracks

➢ In PDTA, this is modeled by reducing the probability of failure proportional to 
undetected cracks

➢ PND is the probability of not detecting a crack in any inspection(s) before 𝑡

17

𝑃𝑂𝐹no−surv 𝑡 = න𝑃𝑁𝐷 𝑎 𝑡 1 − 𝐹𝐸𝑉𝐷 𝜎𝑅𝑆 𝑡 𝑓𝑿 d𝒙

𝑃𝑁𝐷 𝑡 = ෑ

𝑖=1

𝑁𝐼 𝑡

1 − 𝑃𝑂𝐷 𝑎 𝜏𝑖

𝑃𝑂𝐷 = 0.3

𝑃𝑂𝐷 = 0.9

0.02 in 0.08 in

Number of inspections before 𝑡

P
O

D

Crack size (in)
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Change in Combined Important 
Region Due to Inspection

➢ Post-inspection, a new important region emerges around (𝑎𝑖 = 0.007, 𝑘𝑐 = 12.5). 

➢ Stored crack growth analyses reevaluated with the modified response function including an 
inspection provide a good general idea of the new important region location 18

𝑎0

𝐾
𝑐

𝑎0

𝐾
𝑐

Combined Important Region
without inspection

Combined Important Region
with one Inspection

New region



Adding Inspections One-at-a-Time

➢ After each PDTA AMIS run:

➢ Update conditional POF, 𝐻 ⋅ , to include new 
inspection time in PND function

➢ Recalculate 𝐻 ⋅ for all samples over all times 
with existing crack growth evaluations

➢ Re-run PDTA AMIS adaptation

➢ PDTA AMIS only has to add crack growth 
evaluations to adapt for the new inspection 

➢ SMC must rerun all of the crack growth 
evaluations

19

Starting cost of SMC is
106 times greater than

PDTA AMIS

PDTA AMIS cost growth 
slows down with 

additional inspections

No. additional inspections

Inspection 1

Inspection 2

Inspection 3

Flight hours



General Aviation Example Problem
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Parameter Values

Width Deterministic 5 in

Thickness Deterministic 0.125 in

Log Paris Constant 𝑁 −9.0, 0.08

Paris Exponent Deterministic 3.8

Initial Crack Size 𝑊(

)

0.45, 4.17

× 10−5 in

Fracture Toughness 𝑁 35.0, 3.5 ksi in

Maximum Stress per Flight 𝐸𝑉𝐷 13.4, 1.3, 0.07 ksi

Probability of Detection 𝐿𝑁 0.05, 0.065 in

Repair Quality (Crack Size) Perfect

Beta table

Spectrum



POF Results After Adding 8 Inspections

➢ PDTA AMIS

➢ 2800 samples for uninspected POF

➢ 6800 samples for inspected POF 
after adding 8 inspections

➢ PDTA AMIS in excellent agreement 
with SMC using 109 samples

21

Flight hours



POF Results with Opt. Inspections

➢ Risk-Threshold – Find 
the minimal set of 
inspections that 
maintains risk below a 
given threshold using a 
single inspection type
➢ Keep risk below 1E-7

22

Juan Ocampo, Nathan Crosby, Harry Millwater, Chris Hurst, Beth Gamble, and Marv Nuss, “Fleet Management Considering 
Inspection Schedule Optimization”, Aircraft Airworthiness & Sustainment Conf., Ponte Verde, FL, August 2022



POF Results with Opt. Inspections

➢ Minimal-Cost – Find the minimum cost set of 
inspections that maintains risk below a given 
threshold using multiple inspection types

23



Summary

➢ The AMIS algorithm estimates POF for risk assessment using 6 orders of 
magnitude fewer samples compared to standard Monte Carlo sampling for 
probabilities of 10−7 with COV of 0.1.

➢ This efficiency allows for the incorporation of additional random variables into 
the problem and the use of more realistic fracture mechanics solutions.

➢ The SMART methodology in combination with AMIS is not limited to aircraft fleet 
COS and can also be applied to digital twin modeling, virtual testing, and other 
novel applications

24



Future Developments

➢ Optimized inspection schedule

➢Determine the inspection times and inspection methods to keep the risk below 
a user-defined threshold with minimum cost.

➢ Bayesian Module Implementation for Sensor Integration

➢Update crack size simulations with sensor (POD) data.

➢ Probabilistic damage tolerance analysis of more realistic structures

➢Continuing damage, multisite damage, residual stresses, out-of-plane crack 
growth, etc.

➢ Approaches

➢NASGRO interface

➢Surrogate models

➢ Machine learning approaches, e.g., Bingo software, BAMF, etc.  
25



Smart|DT Software

➢ Probabilistic risk assessment development has been funded by 
the US Federal Aviation Administration to develop the 
Smart|DT software.

➢ Available to the general public.

➢ Training presented annually and available online:

➢Aircraft Airworthiness Conference

➢https://smartdtsoftware.wixsite.com/smart

26

Loading 

Generation

EVD Dist dadN 

variability
HyperGrow

Interoperability Scriptable

Web site link
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Adaptive Multiple Importance 
Sampling Approach

Individual evaluation time 
important regions

Combined important 
region

𝐸 𝐻 𝑥, 𝑡 = ෍
𝑗=1

𝑁𝑚𝑖𝑥 1

𝑁𝑠𝑎𝑚𝑝
෍

𝑖=1

𝑁𝑠𝑎𝑚𝑝

𝐻 𝒙𝑖𝑗 , 𝑡 𝜔𝑗 𝒙𝑖𝑗
𝑓 𝒙𝑖𝑗

𝑔 𝒙𝑖𝑗, 𝜃𝑗

𝜔𝑚
𝑠𝑡𝑑 𝒙𝑖𝑗 = ቊ

1, 𝑚 = 𝑗
0, otherwise

𝜔𝑚
𝑏ℎ 𝒙𝑖𝑗 =

𝑛𝑚 𝑞 𝒙𝑖𝑗 , 𝜽𝑚

σ
𝑘=1
𝑁𝑚𝑖𝑥 𝑛𝑘 𝑞 𝒙𝑖𝑗 , 𝜽𝑘

𝐸 𝐻 𝑥, 𝑡 =
1

𝑁𝑚𝑖𝑥 𝑁𝑠𝑎𝑚𝑝
෍

𝑗=1

𝑁𝑚𝑖𝑥

෍
𝑖=1

𝑁𝑠𝑎𝑚𝑝

𝐻 𝒙𝑖𝑗 , 𝑡
𝑓 𝒙𝑖𝑗

Τ1 𝑁𝑚𝑖𝑥 σ
𝑘=1
𝑁𝑚𝑖𝑥 𝑞 𝒙𝑖𝑗 , 𝜽𝑘
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Adaptive Multiple Importance 
Sampling Approach

➢ Approximate the averaged or combined important region using a mixture density composed of 
multivariate normal sampling densities optimized for individual evaluation times.

➢ Key advantage is that samples can be used for more than one important region where regions overlap.

31

Mixture density (5 components) Mixture density (10 components) Mixture density (15 components)



Academic Example

n 2 analysis times: t=0 and t=20000

n No inspections 32

Random variables:
➢ Initial crack size
➢ Fracture toughness
➢ Max stress per flight

POF and COV’s computed 
from 60 samples

S
F
P
O

F
C
O

V

Flight hours



Initialization 1/8

n Initialize empty mixture density, starting 𝜇⋆ at origin, 𝑘⋆ points to last time in list of 

evaluation times.

n Add 𝜇⋆, 𝑐𝜎
2 𝐼 to 𝜃𝑚𝑖𝑥 , set 𝜖⋆ = Τ𝜖𝐾𝐿 10 to check that 𝜇⋆ is not changing before moving to 

next evaluation time.

n Generate samples from 𝑁 𝜇⋆, 𝑐𝜎
2 𝐼 and evaluate crack growth and response functions. 33

5.0 2.5 0.0 2.5 5.0 7.5 10.0
10.0

7.5

5.0

2.5

0.0

2.5

5.0

ua0

u
K
c

Initial mean at origin
stdev = 3

➢ 𝑁𝑚𝑖𝑥 = 1
➢ Initial mixture set at the mean with 

covariance matrix 𝑐𝜎
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➢ 20 samples generated.
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Initialization 2/8

n Using the 20 samples, calculate 𝜇⋆ using the cross-entropy method.

n Evaluate 𝐷𝑚𝑖𝑛 from 𝜇⋆ to all component densities in the mixture. 34

𝜖⋆ = 0.1
𝜇⋆ = 1.4,−1.4

𝐷𝑚𝑖𝑛 = 0.22

➢ 𝐷𝑚𝑖𝑛 > 𝜖∗ ∴ new 

density added.
➢ 𝑁𝑚𝑖𝑥 = 2

𝑁𝑚𝑖𝑥 = 1 prior density

(convergence threshold)

Focus time t=20000

𝑎0



Initialization 3/8

n Add 𝜇⋆, 𝑐𝜎
2 𝐼 to 𝜃𝑚𝑖𝑥 , set 𝜖⋆ = Τ𝜖𝐾𝐿 10 to check that 𝜇⋆ is not changing before moving to next 

evaluation time.

n Generate samples from 𝑁 𝜇⋆, 𝑐𝜎
2 𝐼 and evaluate crack growth and response functions.

35

➢ 20 new samples drawn 
from density #2.

➢ 40 samples total.
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Initialization 4/8

n Calculate 𝜇⋆ using standard weights.

n Evaluate 𝐷𝑚𝑖𝑛 from 𝜇⋆ to all component densities in the mixture.
36
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𝜖⋆ = 0.1
𝜇⋆ = 1.5,−0.2

𝐷𝑚𝑖𝑛 = 0.08

➢ 𝑁𝑚𝑖𝑥 = 2 prior densities.
➢ All 40 samples used to compute new location 𝜇∗.

➢ 𝐷𝑚𝑖𝑛 < 𝜖∗

➢ Evaluation time satisfied. Moving to 
next time value.

➢ No samples generated since the new 
point (red) is close to another density 
(𝐷𝑚𝑖𝑛 = 0.08 ).

Density rejected
𝐷𝑚𝑖𝑛 < 𝜖∗

𝑎0

𝐾
𝑐

Focus time t=20000



Initialization 5/8

n The value 𝐻 changes for the new time point.

n Calculate 𝜇⋆ using standard weights.

n Evaluate 𝐷𝑚𝑖𝑛 from 𝜇⋆ to all component densities in the mixture.

n 𝐷𝑚𝑖𝑛 > 𝜖⋆ so focus on the next evaluation time and locate its important region.

37
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➢ 𝑁𝑚𝑖𝑥 = 2 prior densities.

➢ All 40 samples used to compute 
new location 𝜇∗.

➢ New density added 
centered at red cross. 

➢ 𝑁𝑚𝑖𝑥 = 3

New density
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Initialization 6/8

n Add 𝜇⋆, 𝑐𝜎
2 𝐼 to 𝜃𝑚𝑖𝑥 , set 𝜖⋆ = Τ𝜖𝐾𝐿 10 to check that 𝜇⋆ is not changing before moving to next 

evaluation time.

n Generate samples from 𝑁 𝜇⋆, 𝑐𝜎
2 𝐼 and evaluate crack growth and response functions. 38

➢ 𝑁𝑚𝑖𝑥 = 3 prior densities.

➢ Generate 20 new samples 
from density #3.

➢ Now 60 samples total.

𝑎0
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Initialization 7/8

n Calculate 𝜇⋆ using standard weights.

n Evaluate 𝐷𝑚𝑖𝑛 from 𝜇⋆ to all component densities in the mixture.

n 𝐷𝑚𝑖𝑛 < 𝜖⋆ so focus on the next evaluation time and locate its important region
39
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𝜖⋆ = 0.1
𝜇⋆ = 6.5,−1.6

𝐷𝑚𝑖𝑛 = 0.01

➢ 𝑁𝑚𝑖𝑥 = 3 prior densities.

➢ 60 samples used to 
compute new location 𝜇∗.

Density rejected
𝐷𝑚𝑖𝑛 < 𝜖∗

➢ 𝐷𝑚𝑖𝑛 < 𝜖∗. Evaluation time satisfied. 

Moving to next time value.
➢ No samples generated since the new 

point (red) is close to another density 
(𝐷𝑚𝑖𝑛 = 0.01 )

𝑎0

𝐾
𝑐

Focus time t=0



Initialization 8/8

n 𝑘⋆ = 0, so initialization routine is finished.

n Return mixture density, realizations, crack growth evaluations and response function evaluations.
40

➢ Initialization complete.
➢ 3 densities sufficient for initialization for 2 

time points.
➢ Total of 60 samples. 
➢ Crack growth and POF values saved for 

every sample.
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Adaptation Iteration 1/6

n Update balance heuristic importance weights

n Calculate estimates, estimator variances, and COVs

n Check exit condition (all COVs < 𝜖𝑐𝑜𝑣) or max iterations reached

n Select time with the highest COV 41
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cov 𝑃𝑓 𝑡𝑘 =

Τvar 𝑃𝑓 𝑡𝑘 𝑁

𝑃𝑓 𝑡𝑘

These equations are used to compute the 
POF and COV. 

POF and COV’s computed 
from 60 samples
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Adaptation Iteration 1/6

n Calculate standard weights

n Effective sample size is 1, insufficient to update covariance matrix. Σ⋆ = 𝐼.

n New density is 𝑁 𝜇⋆, 𝐼 , generate samples and evaluate crack growth and response function
42

5.0 2.5 0.0 2.5 5.0 7.5 10.0
10

8

6

4

2

0

2

4

ua0

u
K
c

5.0 2.5 0.0 2.5 5.0 7.5 10.0
10

8

6

4

2

0

2

4

ua0

u
K
c

𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 = ℎ𝑖𝑗𝑘
𝑓 𝒙𝑖𝑗

𝑞 𝒙𝑖𝑗; 𝜽𝑗

𝑛𝑒𝑓𝑓 =
σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

𝟐

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗
2

𝜇⋆ =
σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗
Σ⋆ = 𝐼

Size of dot 
shows sample 

weight

60 samples from 
Initialization.

➢60 samples used to 
compute a new density. 

➢ New density added, 
𝑁𝑚𝑖𝑥 = 4.

➢ 20 new samples generated 
(80 total).𝑎0𝑎0
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Adaptation Iteration 2/6

n Update balance heuristic importance weights

n Calculate estimates, estimator variances, and COVs

n Check exit condition (all COVs < 𝜖𝑐𝑜𝑣) or max iterations reached

n Select time with the highest COV
43
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cov 𝑃𝑓 𝑡𝑘 =

Τvar 𝑃𝑓 𝑡𝑘 𝑁

𝑃𝑓 𝑡𝑘

x

COV Reduced

➢ POF and COV’s computed from 80 
samples.

➢ Weights updated using all 80 samples.
➢ All pofs and covs updated.
➢ COV reduced at t=0, moving to 

t=20,000.Next focus here
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Adaptation Iteration 2/6

n Calculate standard weights.

n Effective sample size is 4, sufficient to update covariance matrix.

n New density is 𝑁 𝜇⋆, Σ⋆ , generate samples and evaluate crack growth and response function.
44
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𝜇⋆ =
σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

Σ⋆ =
σ𝑗σ𝑖 𝒙𝑖𝑗 − 𝝁⋆

⊤
ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗 − 𝝁⋆

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 = ℎ𝑖𝑗𝑘
𝑓 𝒙𝑖𝑗

𝑞 𝒙𝑖𝑗; 𝜽𝑗
𝑛𝑒𝑓𝑓 =

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗
𝟐

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗
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Note, non-circular 
density plot ➢ New density added, 𝑁𝑚𝑖𝑥 = 5.

➢ 20 new samples generated. 
➢ 100 samples total.

Size of dot 
shows sample 

weight

𝑎0𝑎0
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Focus time t=20000



Adaptation Iteration 3/6

n Update balance heuristic importance weights.

n Calculate estimates, estimator variances, and COVs.

n Check exit condition (all COVs < 𝜖𝑐𝑜𝑣) or max iterations reached.

n Select time with the highest COV.
45

𝑤𝑏ℎ 𝑥𝑖𝑗 =
𝑞 𝑥𝑖𝑗 , 𝜃𝑗

σ
𝑙=1
𝑁𝑚 1 ∕ 𝑁𝑚 𝑞 𝑥𝑖𝑗 , 𝜃𝑙

𝑃𝑓 𝑡𝑘 =
1

𝑁
෍

𝑗

෍

𝑖

ℎ𝑖𝑗𝑘 𝑤𝑏ℎ 𝑥𝑖𝑗

var 𝑃𝑓 𝑡𝑘 =
1

𝑁
෍

𝑗

෍

𝑖

ℎ𝑖𝑗𝑘 𝑤𝑏ℎ 𝑥𝑖𝑗 − 𝑃𝑓 𝑡𝑘
2

cov 𝑃𝑓 𝑡𝑘 =

Τvar 𝑃𝑓 𝑡𝑘 𝑁

𝑃𝑓 𝑡𝑘

x

COV Reduced

➢ 100 samples used.
➢ All pofs and covs updated.

S
F
P
O

F
C
O

V

Flight hours



Adaptation Iteration 3/6

n Calculate standard weights.

n Effective sample size is 2, insufficient to update covariance matrix.

n New density is 𝑁 𝜇⋆, 𝐼 , generate samples and evaluate crack growth and response function.
46
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𝜇⋆ =
σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗
Σ⋆ = 𝐼

𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 = ℎ𝑖𝑗𝑘
𝑓 𝒙𝑖𝑗

𝑞 𝒙𝑖𝑗; 𝜽𝑗

𝑛𝑒𝑓𝑓 =
σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

𝟐

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗
2

Circular 
density plot

➢ New density added, 𝑁𝑚𝑖𝑥 = 6.

➢ 20 new samples generated. 
➢ 120 samples total.
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Adaptation Iteration 4/6

n Update balance heuristic importance weights

n Calculate estimates, estimator variances, and COVs

n Check exit condition (all COVs < 𝜖𝑐𝑜𝑣) or max iterations reached

n Select time with the highest COV
47

x
COV Reduced

➢ 120 samples used.
➢ All pofs and covs updated.
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Adaptation Iteration 4/6

n Calculate standard weights

n Effective sample size is 4, sufficient to update covariance matrix

n New density is 𝑁 𝜇⋆, Σ⋆ , generate samples and evaluate crack growth and response function
48
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𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 = ℎ𝑖𝑗𝑘
𝑓 𝒙𝑖𝑗

𝑞 𝒙𝑖𝑗; 𝜽𝑗

𝑛𝑒𝑓𝑓 =
σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

𝟐

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗
2

➢ New density added, 𝑁𝑚𝑖𝑥 = 7.

➢ 20 new samples generated.
➢ 140 samples total.
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Note, non-circular 
density plot
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Focus time t=0

𝜇⋆ =
σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

Σ⋆ =
σ𝑗σ𝑖 𝒙𝑖𝑗 − 𝝁⋆

⊤
ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗 − 𝝁⋆

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗



Adaptation Iteration 5/6

n Update balance heuristic importance weights.

n Calculate estimates, estimator variances, and COVs.

n Check exit condition (all COVs < 𝜖𝑐𝑜𝑣) or max iterations reached.

n Select time with the highest COV.
49

𝑤𝑏ℎ 𝑥𝑖𝑗 =
𝑞 𝑥𝑖𝑗 , 𝜃𝑗

σ
𝑙=1
𝑁𝑚 1 ∕ 𝑁𝑚 𝑞 𝑥𝑖𝑗 , 𝜃𝑙

𝑃𝑓 𝑡𝑘 =
1

𝑁
෍

𝑗

෍

𝑖

ℎ𝑖𝑗𝑘 𝑤𝑏ℎ 𝑥𝑖𝑗

var 𝑃𝑓 𝑡𝑘 =
1

𝑁
෍

𝑗

෍

𝑖

ℎ𝑖𝑗𝑘 𝑤𝑏ℎ 𝑥𝑖𝑗 − 𝑃𝑓 𝑡𝑘
2

cov 𝑃𝑓 𝑡𝑘 =

Τvar 𝑃𝑓 𝑡𝑘 𝑁

𝑃𝑓 𝑡𝑘

x

COV Reduced
below threshold

➢ 140 samples used.
➢ All pofs and covs updated.
➢ COV(t=0) now below threshold.S

F
P
O

F
C
O

V

Flight hours



Adaptation Iteration 5/6

n Effective sample size is 6, sufficient to update covariance matrix.

n New density is 𝑁 𝜇⋆, Σ⋆ , generate samples and evaluate crack growth and response function.
50
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𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 = ℎ𝑖𝑗𝑘
𝑓 𝒙𝑖𝑗

𝑞 𝒙𝑖𝑗; 𝜽𝑗

𝑛𝑒𝑓𝑓 =
σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

𝟐

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗
2

Note, non-circular 
density plot ➢ 𝑁𝑚𝑖𝑥 = 8.

➢ 20 new samples added.
➢ 160 samples total. 
➢ All pofs and covs updated.

𝜇⋆ =
σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

Σ⋆ =
σ𝑗σ𝑖 𝒙𝑖𝑗 − 𝝁⋆

⊤
ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗 − 𝝁⋆

σ𝑗σ𝑖 ℎ𝑖𝑗𝑘 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗𝑎0𝑎0
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Adaptation Iteration 6/6

n Update balance heuristic importance weights.

n Calculate estimates, estimator variances, and COVs.

n Check exit condition (all COVs < 𝜖𝑐𝑜𝑣) or max iterations reached

n All COVs < 𝜖𝑐𝑜𝑣. 
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COV Reduced
below threshold

➢ 160 samples used.
➢ All COVs below threshold.
➢ CG results saved for all 160 samples. 
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Academic Example Summary
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➢ SFPOF computed 
using 160 samples.

➢ (60 initialization, 
100 adaptation).

➢ All COVs below 
user-defined 
threshold of 20%.



AMIS Method

Typical Approach AMIS Method

Probabilistic method Numerical integration Adaptive multiple importance 
sampling

Random variables Only 3 random variables (toughness, 
initial crack size, max load)

Up to ~20 (toughness, initial crack 
size, max load, dadn variability, 
geometric factors)

Accuracy Limit user control/information Adaptivity ensures convergence to 
user-defined threshold

Reanalyses Requires complete reanalysis Mixture densities ensure efficient 
reanalysis

Efficiency Efficient even for small POFs Efficient even for small POFs

53



Transformation to Normal Space

n Transformation to standard normal space simplifies working with 
multiple distributions
– Samples are generated in standard multivariate normal space

– Nominal density is independent standard normal

– Estimated optimal sampling density, likelihood ratio, and parameter updates use normal space

– Samples are transformed to original space using inverse CDF transform (Nataf for correlated 
variables) for crack growth evaluation

54

𝐹−1 Φ 𝒛 Τ׬ d𝑎 d𝑁 𝜎rs 𝑎, 𝐾𝑐 1 − 𝐹EVD 𝜎rsΦstd



Cross Entropy Parameter Calculation

n 𝐻 depends on the Lincoln or Freudenthal formulation, e.g.,1 − 𝐹𝐸𝑉𝐷(𝜎𝑅𝑆 𝒙, 𝑡𝑛 )
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𝜽opt = argmax
𝜽

෍

𝑖

෍

𝑗

𝐻 𝒙𝑖𝑗 , 𝑡 𝑤 𝒙𝑖𝑗 ln 𝑞 𝒙𝑖𝑗 , 𝜽

Ƹ𝜇⋆(𝑡) =
σ𝑖σ𝑗𝐻 𝒙𝑖𝑗 , 𝑡 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗

σ𝑖σ𝑗𝐻 𝒙𝑖𝑗 , 𝑡 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

෠Σ⋆(𝑡) =
σ𝑖σ𝑗 𝒙𝑖𝑗 − Ƹ𝜇⋆ 𝐻 𝒙𝑖𝑗 , 𝑡 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 𝒙𝑖𝑗 − Ƹ𝜇⋆

𝑇

σ𝑖σ𝑗𝐻 𝒙𝑖𝑗 , 𝑡 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

Parameters Ƹ𝜇⋆(𝑡), and ෠Σ⋆(𝑡) maximize the cross entropy

Mean of 
mixture densities

Covariance of 
mixture densities

𝑁𝑠𝑎𝑚𝑝𝑁𝑚𝑖𝑥

Closed form solution



Initialization Overview

n Initialization algorithm searches for important regions for each time and adds 
component densities to the mixture

n 𝑁𝑚𝑎𝑥𝑖𝑡𝑒𝑟 and 𝑁𝑠 set the maximum number of iterations and samples generated per 

iteration

n 𝑡𝑝𝑓 , 𝐶𝐺 ⋅ and 𝐻 ⋅ define the evaluation times, crack growth function and response 

function

n 𝑐𝜎 controls the variance of the initialization sampling densities

n 𝜖𝐾𝐿 controls distance between initialization densities
– Multiple steps will be taken for each evaluation time if the sampling density location changes with 

additional samples

56



Initialization Summary

n Samples have been generated in and around the important regions

n Exploration by the initialization is very important – the adaptation phase does not 
search for new important regions that are not found during the initialization phase 57
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Mixture density weights – multiple 
definitions

n Large weights will not decrease as 
component densities are added

n Give the best weight out of all component 
densities for each sample

n If the mixture includes the nominal density, this 
weighting has an upper bound
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𝜔𝑚
𝐵𝐻 𝒙𝑖𝑗 =

𝑛𝑗 𝑞 𝒙𝑖𝑗, 𝜽𝑗

σ
𝑙=1
𝑁𝑚𝑖𝑥 𝑛𝑙 𝑞 𝒙𝑖𝑗 , 𝜽𝑙

𝜔𝑚
𝑠𝑡𝑑 𝒙𝑖𝑗 = ቊ

1 𝑗 = 𝑚
0 otherwise

𝑤𝑠𝑡𝑑 𝒙𝑖𝑗 =
𝑓 𝒙𝑖𝑗

𝑞 𝒙𝑖𝑗,𝜽𝑗
𝑤𝐵𝐻 𝒙𝑖𝑗 =

𝑓 𝒙𝑖𝑗

σ
𝑙=1
𝑁𝑚𝑖𝑥 1 ∕ 𝑛𝑚𝑖𝑥 𝑞 𝒙𝑖𝑗, 𝜽𝑙

Standard weights Balance heuristic weights



𝒟 𝑝 𝒙 , 𝑞 𝒙 = න ln
𝑝 𝒙

𝑞 𝒙
𝑝 𝒙 𝑑𝑥 = නln 𝑝 𝒙 𝑝 𝒙 d𝒙 − නln 𝑞 𝒙 𝑝 𝒙 d𝒙

Cross Entropy – Kullback-Leibler 
Divergence

n 𝒟 is a metric – a measure of difference between two PDFs

– 𝒟 ≥ 0, 𝒟 = 0 when the PDFs are identical
59

Kullback-Leibler Divergence



Mixture density 

n Mixture density is composed of component sampling densities optimal for individual times

n Mixture importance weight is a weighted sum of importance weights from all component densities

n The estimator is a double summation over component densities and samples from each density 60

Mixture weights for sample 𝒙𝑖𝑗, σ𝑚=1
𝑁𝑚𝑖𝑥𝜔𝑚 𝒙𝑖𝑗 = 1 𝑗-th component density with parameters 𝜽𝑗

Mixture importance weight for sample 𝒙𝑖𝑗 Nominal density

෣POF 𝑡 =෍
𝑗=1

𝑁𝑚𝑖𝑥 1

𝑁𝑠𝑎𝑚𝑝
෍

𝑖=1

𝑁𝑠𝑎𝑚𝑝

𝐻 𝒙𝑖𝑗 , 𝑡 𝜔𝑗 𝒙𝑖𝑗
𝑓 𝒙𝑖𝑗

𝑔 𝒙𝑖𝑗 , 𝜃𝑗

𝜔𝑚
𝑏ℎ 𝒙𝑖𝑗 =

𝑛𝑚 𝑞 𝒙𝑖𝑗 , 𝜽𝑚

σ
𝑘=1
𝑁𝑚𝑖𝑥 𝑛𝑘 𝑞 𝒙𝑖𝑗 , 𝜽𝑘

∀ 𝑖, 𝑗



Effective Sample Size

n When one or two weights have much larger weight, updating the covariance matrix parameters can 
give a point-like or degenerate sampling density

n 𝑛𝑒𝑓𝑓 estimates the effective number of samples (between 0 and 𝑁) based on how evenly the weights 

are distributed

n When 𝑛𝑒𝑓𝑓 is low, only the location parameter is updated
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𝑛𝑒𝑓𝑓 =
σ𝑗σ𝑖𝐻 𝒙𝑖𝑗 , 𝑡 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗

𝟐

σ𝑗σ𝑖 𝐻 𝒙𝑖𝑗 , 𝑡 𝑤𝑠𝑡𝑑 𝒙𝑖𝑗
2

Backup



PDTA AMIS Algorithm
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Calculate BH weights and evaluate 𝑃𝑓 𝑡 , 

var 𝑃𝑓 𝑡 , and cov 𝑃𝑓 𝑡 for all  𝑡

Select 𝑘⋆ (time index) to use for estimating 
the important region

Calculate standard weighted responses and 
𝑛𝑒𝑓𝑓

Add 𝜇⋆, Σ⋆ to 𝜃𝑚𝑖𝑥 and generate 𝑿𝑖𝑗 from 

𝑁 𝜇⋆, Σ⋆ , evaluate 𝒄𝒈𝑖𝑗 and 𝒉𝑖𝑗𝑘

Update 𝜇⋆and Σ⋆

max cov < 𝜖𝑐𝑜𝑣

Inputs: 𝑁𝑚𝑎𝑥𝑖𝑡𝑒𝑟, 𝑁𝑠, 𝑡𝑝𝑓 , 𝜖𝑐𝑜𝑣 , 𝐶𝐺 ⋅ , 𝐻 ⋅ , 

𝑁𝑚, 𝜃𝑚𝑖𝑥 , 𝑿𝑖𝑗, 𝒄𝒈𝑖𝑗, 𝒉𝑖𝑗𝑘

N

Y

Return mixture, samples,  𝑃𝑓 𝑡 , var 𝑃𝑓 𝑡 , 

and cov 𝑃𝑓 𝑡 , 𝑁𝑚, 𝜃𝑚𝑖𝑥 , 𝑿𝑖𝑗, 𝒄𝒈𝑖𝑗, 𝒉𝑖𝑗𝑘

Add 𝜇⋆, 𝑐𝜎
2 𝐼 to 𝜃𝑚𝑖𝑥

Set 𝑁𝑚 = 𝑁𝑚 + 1, Set 𝜖⋆ = 𝜖KL ∕ 10

Generate 𝑿𝑖𝑗 from 𝑁 𝜇⋆, 𝑐𝜎
2 𝐼 , evaluate  𝒄𝒈𝑖𝑗 and 𝒉𝑖𝑗𝑘

Calculate near optimal mean, 𝜇⋆, from sample response 
empirical PDF

Find minimum relative entropy, 𝐷min, between 
mixture densities and 𝑁 𝜇⋆, 𝑐𝜎

2 𝐼

Decrement 𝑘⋆

Set 𝜖⋆ = 𝜖𝐾𝐿

𝐷min < 𝜖⋆

Initial values 𝑁𝑚 = 0, 𝜇⋆ = 0 and  𝑘⋆ = len 𝑡𝑝𝑓

𝑘⋆ ≤ 0

Return 𝑁𝑚, 𝜃𝑚𝑖𝑥 , 𝑿𝑖𝑗, 𝒄𝒈𝑖𝑗, 𝒉𝑖𝑗𝑘

N

Y

N

Y

𝜇
⋆

𝑘
⋆

Inputs: 𝑁𝑚𝑎𝑥𝑖𝑡𝑒𝑟, 𝑁𝑠, 𝑡𝑝𝑓 , 𝜖𝐷, 𝑐𝜎, 𝐶𝐺 ⋅ , 𝐻 ⋅



Adaptation Overview

n Adaptation algorithm adds sampling densities to the 
mixture until coefficient of variations (COVs) for all 
estimation times are below the user threshold, 𝜖𝑐𝑜𝑣

n Balance heuristic weights are used for to estimate POF 
and COV

n Standard weights are used for calculating new 
component density parameters

n Inputs include outputs from the initialization stage 

63

Calculate BH weights and evaluate 𝑃𝑓 𝑡 , 

var 𝑃𝑓 𝑡 , and cov 𝑃𝑓 𝑡 for all  𝑡

Select 𝑘⋆ (time index) to use for estimating 
the important region

Calculate standard weighted responses and 
𝑛𝑒𝑓𝑓

Add 𝜇⋆, Σ⋆ to 𝜃𝑚𝑖𝑥 and generate 𝑿𝑖𝑗 from 

𝑁 𝜇⋆, Σ⋆ , evaluate 𝒄𝒈𝑖𝑗 and 𝒉𝑖𝑗𝑘

Update 𝜇⋆and Σ⋆

max cov < 𝜖𝑐𝑜𝑣

Inputs: 𝑁𝑚𝑎𝑥𝑖𝑡𝑒𝑟, 𝑁𝑠, 𝑡𝑝𝑓 , 𝜖𝑐𝑜𝑣 , 𝐶𝐺 ⋅ , 𝐻 ⋅ , 

𝑁𝑚, 𝜃𝑚𝑖𝑥 , 𝑿𝑖𝑗, 𝒄𝒈𝑖𝑗, 𝒉𝑖𝑗𝑘

N

Y

Return mixture, samples,  𝑃𝑓 𝑡 , var 𝑃𝑓 𝑡 , 

and cov 𝑃𝑓 𝑡 𝑁𝑚, 𝜃𝑚𝑖𝑥 , 𝑿𝑖𝑗, 𝒄𝒈𝑖𝑗, 𝒉𝑖𝑗𝑘

Add text why the 2 
different weights are 

used
Proof of consistency??



Single Evaluation Time Important 
Region Contour Comparison

n Freudenthal important regions are much thinner
– Reduced overlap which reduces potential for samples to contribute in more than one region
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PDTA AMIS Reuse  

n Initial run (left plot) not including any inspections, completed with 880 samples

n The stored crack growth analyses were reevaluated with a modified response 
function including an inspection

n After re-running the adaptation algorithm the mixture density has been re-adapted 
using 320 additional samples to include the new important region near (0.01, 10)

65

POF without inspection POF with one Inspection



Modeling Repair Quality using 
Weighted Branch Integration

n Repair cracks account for the possibility that a new crack forms in the same component

n The weighted branch integration method includes repairs as independent PDTA analyses
– Each branch is weighted according to the percentage of cracks detected in the trunk and other branches 66

Percentage of Cracks Detected

7000 9000 11000 wbranch

Trunk 𝑃𝐷𝐸𝑇0,1 𝑃𝐷𝐸𝑇0,2 𝑃𝐷𝐸𝑇0,3 𝑤0 = 1

B 1 - 𝑃𝐷𝐸𝑇1,2 𝑃𝐷𝐸𝑇1,3 𝑤1 = 𝑃𝐷𝐸𝑇0,1

B 2 - 𝑃𝐷𝐸𝑇2,3 𝑤2 = 𝑃𝐷𝐸𝑇0,2 + 𝑤1 𝑃𝐷𝐸𝑇1,2

B 3 - 𝑤3 = 𝑃𝐷𝐸𝑇0,3 + 𝑤1 𝑃𝐷𝐸𝑇1,3 + 𝑤2 𝑃𝐷𝐸𝑇2,3

𝑃𝐷𝐸𝑇𝑖,𝑗 𝜏𝑗 = න𝑃𝑁𝐷 𝜏𝑗 𝑃𝑂𝐷𝑗 𝑎 𝜏𝑗 𝑓𝑋 𝑑𝑥

𝑤𝑖 =෍

𝑘

𝑖−1

𝑤𝑘 𝑃𝐷𝐸𝑇𝑘,𝑗



Repair Branch Analyses

n Branches are identical analyses except for the part from 𝑡 = 17000 to 𝑡 = 20000

n The PDTA AMIS algorithm is able to estimate POFs and PDETs for all branches from 1st branch 
samples  

67

Percentage of Cracks Detected

7000 9000 11000 13000 15000 17000 wbranch

Trunk 0.562 0.268 0.106 0.035 0.010 0.003 1.000

B 1 - 0.521 0.301 0.135 0.047 0.013 0.562

B 2 - 0.521 0.301 0.135 0.047 0.561

B 3 - 0.521 0.301 0.135 0.567

B 4 - 0.521 0.301 0.575

B 5 - 0.521 0.582

B 6 - 0.589



NASGRO Example with 
Inspections and Repairs

Parameter Value

Width Deterministic 2.5 in

Thickness Deterministic 0.25 in

Initial Crack Size 𝐿𝑁 0.005, 0.002 in

Aspect Ratio (A/C) 1 𝑁 1.5, 0.14

Fracture Toughness 𝑁 34.8, 3.90 ksi in

Log Paris Constant 𝑁 −8.777, 0.08

Paris Exponent Deterministic 3.273

Hole Diameter Deterministic 0.1562 in

Hole Offset 2 𝑁 0.5, 0.05 in

Maximum Stress per Flight 𝐸𝑉𝐷 16.74, 2.08, 0.0 ksi

Probability of Detection 𝐿𝑁 0.021, 0.028 in

Repair Quality (crack size) 𝐿𝑁 0.01, 0.004 in 68
Inspection Schedule

7000 9000 11000 13000 15000 17000

Spectrum



POF Results with Repairs

n PDTA AMIS
– Trunk inspected POF: 4060 samples

– Trunk uninspected POF: +0 samples

– Trunk Percent Cracks Det: +140 samples

– Repair crack Branch POFs: 4060 samples

n 8260 total samples

69

Flight Hours
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